
CSCI4140 - Tutorial 11
Assignment 3 Overview
Simplified iReserve Bot

Calvin, Kam Ho Chuen (hckam@cse)
2 Apr 2015

1

Errata: Slide15 changed
Week 12

Outline
Demonstration of Assignment 3 PartI

Chrome Storage

OCR

CheckList

2

Demonstration
Preliminary version only, more details to come!  
Stay tuned!

3

“iReserve”
Emulation Page

4

“iReserve”
Emulation Page

Email field and Password field

5

“iReserve”
Emulation Page

Captcha: Generated on-the-fly

6

“iReserve”
Emulation Page

It contains 3 text fields: Email, Password,
Captcha input.

Your extension should be able to fill in them
with stored data.

No need to be implemented by yourself :P  
We will provide the code, link will be given
later.

7

Chrome Extension

8

Please Refer to
Specification for
updated info.

Chrome Extension

Element ID: The target object to be filled.

9

Please Refer to
Specification for
updated info.

Chrome Extension

Value: User’ details

10

Please Refer to
Specification for
updated info.

Chrome Extension

Element ID: The target object to be filled.

Captcha Picture ID

Captcha Input TextField ID

11

Please Refer to
Specification for
updated info.

Chrome Extension

Element ID: The target object to be filled.

Saving to LocalStorage
Save & Fill in the form immediately

Close the popup

12

Chrome Extension
The extension should have a popup, allowing
user to input the pre-filled information.

There are two textfields for email and
password, namely #ID and value.

For captcha, two textfields are also required:
one is for captcha picture #ID, another is for
Captcha input #ID.

13

Program Flow
Load the Extension

An icon appears next to the address bar, a popup page
appears when it is clicked.

When the iReserve page is loaded (reloaded), the content
script will be injected automatically, i.e. form filling is done
when the page finishes loading.

Form filling can also be done without reloading by clicking
the “Fill” button in the popup page.

User details can be saved to local storage for later retrieval.

14

Saving Data locally
in Chrome

Chrome provides a handy tool to store user
data, namely storage.sync and
storage.local.

storage.sync will allow Chrome to sync across
each Chrome browser with user logged in.

storage.local will store the data in local
machine only. (In this case we will use it).

15

storage.local
Remember to set “Storage” permission!

"permissions":	 [
	 	 	 	 "activeTab",	
	 	 	 	 "storage",	
	 	 	 	 "tabs"	
],

16

storage.local
store values

chrome.storage.local.set({'key':"value",'key2':"value2"},	
function(e){});

It stores the data in a key-value pair manner.

callback on success.

17

storage.local
get values

The first parameter is to define which keys to
retrieve (in String or array of string). If it is
null, then all keys are retrieved.

If on success, the value will be stored in
parameter of callback function (e).

chrome.storage.local.get(null,function(e){	
console.log(e["key"]);	
});

18

Optical Character
Recognition (OCR)
To bypass the captcha, OCR is needed to
recognise the characters 😈.

In our chrome extension case, “OCRAD.js” is
recommended.

19

Ocrad.js
Include it in content script section at manifest

Easy to use. Require only one sentence of code!!!
(YEAH)

However, it only accepts a canvas element and a
Context2D instance. That means it does not
accept img object!

We need to preprocess the captcha image..😫

var	 string	 =	 OCRAD(image);

"js":	 ["ocrad.js","action.js"],

20

Preprocess the
image for OCRAD.js

First a image object is created and make the source pointing the
object.

Then the image will be drawn on canvas and it can be passed to OCRAD.js
library!

If the environment is hell-like (Open____), how can we ensure the script
runs after the image completely loaded? Use onload function of image.

var	 image	 =	 new	 Image();	
image.src	 =	 document.getElementByID("image").src;	
//	 Initialize	 a	 canvas	
var	 canvas	 =	 document.createElement('canvas');	
canvas.height	 =	 image.height;	
canvas.width	 =	 image.width;	
var	 imgDraw	 =	 canvas.getContext('2d');	
imgDraw.drawImage(image,0,0);	
var	 string	 =	 OCRAD(imgDraw);

21

Message Passing from
popup to content script

If you want to send content script messages
from the popup page like this:

You need another 
function to do this:

22

Message Passing from
popup to content script
chrome.tabs.query({active:	 true,	 currentWindow:	 true},	
function(tabs)	 {chrome.tabs.sendMessage(tabs[0].id,	
{key:"value"},function(response){});	
});

This will find the current active tab and then get
the id. This id is necessary to specify the
recipient of the action :)

The content script uses the normal listener to
handle the message sending.

Last Reminder: need “tabs” permission!

23

CheckList
How do I define a Chrome Extension? [Tut 1].

How do I save data locally? [Tut 2].

How do I access the DOM Object? [Tut 1].

How do I manipulate the webpage object? [Tut
1].

How do I recognize the character? [Tut 2].

24

Reference
https://developer.chrome.com/extensions

http://antimatter15.com/ocrad.js/demo.html

25

https://developer.chrome.com/extensions
http://antimatter15.com/ocrad.js/demo.html

Thank You!

Next Tutorial: Assignment 3 Part II.

See You :)

26

