Lol b al) L OIRIAL WEEK S

Calvin Kam (hckam@ CSE)

COUFLINE

Introduction to Assignment 2
Signals.

Various functions you need.
Command Chaining.

Data Structure.

AaoiGPNMEBENT L HIBS BEEN
RELEASED!

Writing a Simple Shell

Has following features:
Command Execution
Shell Commands
Signal Handling

Command Chaining using && and ||

gofolder, log
e Bye

~ Invoke shell command

Done for you
START

Built-in command
grammar check

Waiting for input

Command Line
Interpreter

END

Partially Done

e \Waiting for command

e : Process Creation
termination/suspension

abiER L O AN

Shell commands are the commands that you need to implement
with your codes (not with exec*()).

gofolder (~ cd)
bye (~exit)

log (~history)

T HE WORKFLOW

lgnore some signals
Get the user input.
Tokenize the input and store them.

Check if it is a shell command. Check grammar here. Some of them has

requirements.(e.g. Number of arguments). Execute if they are good to go. For
other commands, use fork-exec-wait combination.

Perform command chaining. Check the exit statuses and conditions.
Once the child terminates, your shell prompts for user input.

If user input “bye” or EOF (Ctrl-D), your program quits.

SIGNALS

Signals are interrupts sent to the process.

If custom signal handlers are not defined or not changed to
ignore, default signal handler will be used.

Eg: SIGSEGV(SEG Fault), SIGINT (Ctrl-C), SIGTSTP (Ctrl-Z),
SIGCHLD, SIGTERM, SIGKILL, and etc.

We use kill() to send out signals (not just kill the process!).

BTW, EOF (Ctrl-D) is NOT signal

CUSEOME SIGINAL ROILTFINES

We can let the process behaves differently upon different signals.
Can set them to ighore or even custom user-level handler.

Of course, we cannot do anything on SIGKILL (unstoppable).

L OO SRR BT FINES

#include <stdio.h>
#include <signal.h>

int main(int argc,char *argv[])
{
signal (SIGINT,SIG IGN);
printf("Put into while 1 loop..\n");
while(1) { }
printf("0K!\n");

return 9;

CUSEOME SIGINAL ROILTFINES

/* Signals/custom.c */
#include <stdio.h>
#include <signal.h>

void handler(int signal)

{
¥

printf("Signal %d Received.Kill me if you can\n",signal);

int main(int argc,char *argv[])
{
signal (SIGINT,handler);
printf("Put into while 1 loop..\n");
while(1) { }
printf("OK!\n");
return 0;

|0

Cab b CUIRREINL EATH

In the prompt, it shows the current working directory.

We can use a getcwd() to get it easily.

#include <unistd.h>
char *getcwd(char *buf, size t size);

GETCWD()

#include <stdio.h>

#include <limits.h> // Needed by PATH MAX
#include <unistd.h> // Needed by getcwd()
int main(int argc,char *argv[]){
char cwd[PATH MAX+1];
if(getcwd(cwd,PATH MAX+1) != NULL){
printf("Current Working Dir: %s\n",cwd);

elseq
printf("Error Occured!\n");
h

return 0;

}

12

CHANGE DIRECHORY

To change the working directory, we can use the following
function.

“gofolder” in your assighment.

#include <unistd.h>
int chdir(const char *path);

13

CHDIR()

/* Shell/chdir.c */
#include <stdio.h>
#include <unistd.h>
#include <limits.h>
#include <errno.h>
#include <string.h>
int main(int argc,char *argv[]) {
char buf[PATH_MAX+1];
char input[255];
if(getcwd(buf,PATH MAX+1) != NULL) {
printf("Now it is %s\n",buf);
printf("Where do you want to go?:");
fgets(input, 255,stdin);
input[strlen(input)-1] = '\@';

if(chdir(input) != -1) {
getcwd(buf,PATH MAX+1);
printf("Now it is %s\n",buf); }
else {
printf("Cannot Change Directory\n"); }
}
return 0;

¥

Error
Checking

|4

CHANGE ENVIRONMENT
VARIABLE

In order to setup a searching sequence for shell, we need to
change the $PATH variable.

You can either provide a new set of environment variables in
some of exec™®() family members or using this function:

#include <stdlib.h>
int setenv(const char *name, const char *value, int overwrite);

|5

SETENV()

#include
#include
#include
#include
#include

int main(int argc,char *argv[])

{

char *commandl[] = {"shutdown",NULL};
printf("Running shutdown.. it is in /sbin :P \n\n");
setenv("PATH","/bin:/usr/bin:.",1);
execvp(*commandl, commandl);

if(errno

else

printf("I dont know...\n");

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<errno.h>

== ENOENT)
printf("No Command found...\n\n");

return 0;

Need To Overwrite

16

[RENGEE 202 23 DT AT |

COMMAND CHAINING

In this assignment, you are required to chain commands by AND (&&) and OR

(11)-

These are very useful in shell script programming.
A (Operator) B.
Execution of B depends on the exit status of A.

Runs successfully = Exit Normally with Exit Status O.

In assighment we won'’t test you for chaining many commands, but of course

try take the challenges ;P
17

AND &&

A && B

If A runs successfully, then B will run.

If A fails, then B will NOT run.

Usage:

Doing a series of jobs of which the subsequent job only runs if the
previous one runs successfully.

mkdir abc && cd abc

|18

OR ()

AllB

If A runs successfully, B will NOT run.

If A fails, then B will run.
Usage:
Error Reporting.

rm abc && echo “Error’’.

19

LIATA S ERUE FLRE

Remember your data structure class :P

It is good to store your commands in a manageable data
structure.

Multi-dimensional arrays
Linked List, vector

and etc....

20

ARGUMENT ARRAY

In some exec*() members, you need to provide an argument
array.

Actually it is an array of pointers.

| s \O
Pointer HERE
a | \O
NULL

Pointer HERE

ARGUMENT ARRAY

As we have to access two pointers in order to get to the string,

dereferencing twice (malloc() two times) are needed.

#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<sys/wait.h>

int main(int argc,char *argv[])

{

char

arglist = (char) malloc(sizeof(char*) * 3);

arglList[@] = (char*)malloc(sizeof(char) * 10);
strcpy(arngst[@], '‘1s");

arglList[1] (char*)malloc(sizeof(char) * 10);
strcpy(arngst[l], -al");

arglList[2] = NULL;

execvp(*arglList,arglList);
return 0;

27

OO LK

Individual Work.
Prof. Lo ’s Early Bird Policy
Early Bird Submission Deadline: |3 OCT 2016 11:59 AM

Normal Submission Deadline; 20 OCT 2016 | 1:59 AM

23

