
CSCI3150 TUTORIAL WEEK 5
Calvin Kam (hckam@ CSE)

1

OUTLINE

Introduction to Assignment 2

Signals.

Various functions you need.

Command Chaining.

Data Structure.

2

ASSIGNMENT 2 HAS BEEN
RELEASED!

Writing a Simple Shell

Has following features:

Command Execution

Shell Commands

Signal Handling

Command Chaining using && and ||
3

Waiting	for	input

Command	Line	
Interpreter

Built-in	command	
grammar	check

Invoke	shell command

Process	CreationWaiting	for	command	
termination/suspension

END

START

gofolder, log
Bye

Done for you

Partially Done

4

SHELL COMMANDS

Shell commands are the commands that you need to implement
with your codes (not with exec*()).

gofolder (~ cd)

bye (~exit)

log (~history)

5

THE WORKFLOW

Ignore some signals

Get the user input.

Tokenize the input and store them.

Check if it is a shell command. Check grammar here. Some of them has
requirements.(e.g. Number of arguments). Execute if they are good to go. For
other commands, use fork-exec-wait combination.

Perform command chaining. Check the exit statuses and conditions.

Once the child terminates, your shell prompts for user input.

If user input “bye” or EOF (Ctrl-D), your program quits.

6

SIGNALS

Signals are interrupts sent to the process.

If custom signal handlers are not defined or not changed to
ignore, default signal handler will be used.

Eg: SIGSEGV(SEG Fault), SIGINT (Ctrl-C), SIGTSTP (Ctrl-Z),
SIGCHLD, SIGTERM, SIGKILL, and etc.

We use kill() to send out signals (not just kill the process!).

BTW, EOF (Ctrl-D) is NOT signal
7

CUSTOM SIGNAL ROUTINES

We can let the process behaves differently upon different signals.

Can set them to ignore or even custom user-level handler.

Of course, we cannot do anything on SIGKILL (unstoppable).

8

CUSTOM SIGNAL ROUTINES

#include	<stdio.h>	
#include	<signal.h>	

int	main(int	argc,char	*argv[])	
{	
				signal(SIGINT,SIG_IGN);	
				printf("Put	into	while	1	loop..\n");	
				while(1)	{	}	
				printf("OK!\n");	
				return	0;	
}

SIG_IGN: Ignore

9

CUSTOM SIGNAL ROUTINES
/*	Signals/custom.c	*/	
#include	<stdio.h>	
#include	<signal.h>	

void	handler(int	signal)	
{	
				printf("Signal	%d	Received.Kill	me	if	you	can\n",signal);	
}	

int	main(int	argc,char	*argv[])	
{	
				signal(SIGINT,handler);	
				printf("Put	into	while	1	loop..\n");	
				while(1)	{	}	
				printf("OK!\n");	
				return	0;	
} 10

GET CURRENT PATH

In the prompt, it shows the current working directory.

We can use a getcwd() to get it easily.

#include	<unistd.h>	
char	*getcwd(char	*buf,	size_t	size);

11

GETCWD()

#include	<stdio.h>	
#include	<limits.h>	//	Needed	by	PATH_MAX	
#include	<unistd.h>	//	Needed	by	getcwd()	
int	main(int	argc,char	*argv[]){	
				char	cwd[PATH_MAX+1];	
					if(getcwd(cwd,PATH_MAX+1)	!=	NULL){	
									printf("Current	Working	Dir:	%s\n",cwd);						
}					
				else{										
								printf("Error	Occured!\n");	
				}					
	return	0;	
}

12

CHANGE DIRECTORY

To change the working directory, we can use the following
function.

“gofolder” in your assignment.

#include	<unistd.h>	
int	chdir(const	char	*path);

13

CHDIR()
/*	Shell/chdir.c	*/	
#include	<stdio.h>	
#include	<unistd.h>	
#include	<limits.h>	
#include	<errno.h>	
#include	<string.h>	
int	main(int	argc,char	*argv[])	{		
				char	buf[PATH_MAX+1];		
				char	input[255];		
				if(getcwd(buf,PATH_MAX+1)	!=	NULL)	{		
								printf("Now	it	is	%s\n",buf);		
								printf("Where	do	you	want	to	go?:");										
								fgets(input,255,stdin);		
								input[strlen(input)-1]	=	'\0';		
								if(chdir(input)	!=	-1)	{		
												getcwd(buf,PATH_MAX+1);		
												printf("Now	it	is	%s\n",buf);								}		
								else	{		
												printf("Cannot	Change	Directory\n");	}		
				}		
return	0;	
}

Error
Checking

14

CHANGE ENVIRONMENT
VARIABLE

In order to setup a searching sequence for shell, we need to
change the $PATH variable.

You can either provide a new set of environment variables in
some of exec*() family members or using this function:

#include	<stdlib.h>	
int	setenv(const	char	*name,	const	char	*value,	int	overwrite);

15

SETENV()
#include	<stdio.h>	
#include	<stdlib.h>	
#include	<unistd.h>	
#include	<string.h>	
#include	<errno.h>	

int	main(int	argc,char	*argv[])	
{		
				char	*command1[]	=	{"shutdown",NULL};	
				printf("Running	shutdown..	it	is	in	/sbin	:P	\n\n");	
				setenv("PATH","/bin:/usr/bin:.",1);		
				execvp(*command1,command1);	

	if(errno	==	ENOENT)		
				printf("No	Command	found...\n\n");		
	else	
				printf("I	dont	know...\n");		
				return	0;	
}

Need To Overwrite

16

COMMAND CHAINING

In this assignment, you are required to chain commands by AND (&&) and OR
(||).

These are very useful in shell script programming.

A (Operator) B.

Execution of B depends on the exit status of A.

Runs successfully = Exit Normally with Exit Status 0.

In assignment we won’t test you for chaining many commands, but of course
try take the challenges ;P

17

AND &&

A && B

If A runs successfully, then B will run.

If A fails, then B will NOT run.

Usage:

Doing a series of jobs of which the subsequent job only runs if the
previous one runs successfully.

mkdir abc && cd abc
18

OR (||)

A || B

If A runs successfully, B will NOT run.

If A fails, then B will run.

Usage:

Error Reporting.

rm abc && echo “Error”.
19

DATA STRUCTURE

Remember your data structure class :P

It is good to store your commands in a manageable data
structure.

Multi-dimensional arrays

Linked List, vector

and etc….

20

ARGUMENT ARRAY

In some exec*() members, you need to provide an argument
array.

Actually it is an array of pointers.

argList[0]

argList[1]

argList[2]

l s

- a l \0

\0

NULL
Pointer	HERE

Pointer	HERE

21

ARGUMENT ARRAY

As we have to access two pointers in order to get to the string,
dereferencing twice (malloc() two times) are needed.

#include	<stdio.h>	
#include	<stdlib.h>	
#include	<unistd.h>	
#include	<string.h>	
#include	<sys/wait.h>	

int	main(int	argc,char	*argv[])	
{		
				char	**argList	=	(char**)	malloc(sizeof(char*)	*	3);		
				argList[0]	=	(char*)malloc(sizeof(char)	*	10);						
				strcpy(argList[0],"ls");		
				argList[1]	=	(char*)malloc(sizeof(char)	*	10);						
				strcpy(argList[1],"-al");		
				argList[2]	=	NULL;	

				execvp(*argList,argList);	
			return	0;	
}

22

GOOD LUCK 😎

Individual Work.

Prof. Lo ’s Early Bird Policy

Early Bird Submission Deadline: 13 OCT 2016 11:59 AM

Normal Submission Deadline: 20 OCT 2016 11:59 AM

23

